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I. CAUSAL DIFFUSION FORMULATION

We assume that the diffusion process for the energy and momentum of a parton to be absorbed in the medium is
modeled by the causal diffusion equation:

sµ(t, ~x) = pµpartonρ(t, ~x), (1)

τdiff
∂2ρ(t, ~x)

∂t2
+
∂ρ(t, ~x)

∂t
= Ddiff∇2ρ(t, ~x), (t > tstart), (2)

where sµ is the distribution of the diffusing momentum, pµparton is the momentum of the parton being dif-

fused. In the Causal Liquefier module of JETSCAPE, the initial conditions are ρ(t = tstart, ~x) = δ(3)(~x −
~xparton) and ∂ρ

∂t (t = tstart, ~x) = 0. Here tstart is the Cartesian time when the energy of the parton start
the evolution by the diffusion equation and ~xparton is the position of the parton. (tstart, ~xparton) is denoted as
(x drop[0], x drop[1], x drop[2], x drop[3]) in the code.

TABLE I: Main Parameters in the Cousal Liquefier

Notation in this document Notation in the code Description

τdiff time relax Relaxation time in the diffusion equation

Ddiff d diff Diffusion coefficient in the diffusion equation

τdelay tau delay Proper time duration of evolution by the Diffusion Equation

II. GAUSS’S LAW AND ENERGY MOMENTUM TENSOR

The causal diffusion equation can be written in a form of the equation of continuity:

∂ρ(t, ~x)

∂t
+ ~∇ ·~j(t, ~x) = 0, (3)

with the current ~j satisfying the constitutive equation,

τdiff
∂

∂t
~j +~j = −Ddiff

~∇ρ. (4)

Denote jµ = (ρ,~j) and Eq. (3) can be re-written as ∂µj
µ = 0. Using the Gauss’s law, the conservation law can be

written as

0 =

∫
dV4∂µj

µ =

∫
dΣdep.

µ jµ −
∫
dΣstart

µ jµ, (5)∫
dΣdep.

µ jµ =

∫
dΣstart

µ jµ =

∫
dV3ρ(t = tstart, ~x) = 1, (6)

dΣstart
µ ≡ (dV3, 0, 0, 0). (7)
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Here dΣstart
µ is the normal vector for the 3-dimensional hypersurface at t = tstart and dΣdep.

µ is the normal vector for the
3-dimensional hypersurface where the energy-momentum injection into the medium happens. dV4 is the 4-dimensional
volume element covered with those hypersurfaces. Thus, an element of the deposited energy and momentum at the
energy-momentum injection surface can be written as

dpµdep = pµparton(dΣdep.
ν jν), (8)

and the conservation law can be confirmed as

pµtotal dep. ≡
∫
dpµdep =

∫
pµparton(dΣdep.

ν jν) = pµparton, (9)

where pµtotal dep. is the total momentum covered with the injection hypersurface. Thus, for the calculations with an

arbitrary injection hypersurface dΣdep.
ν , one needs to obtain all the components of jν = (ρ,~j). Finally, the energy

momentum tensor at the injection surface Tµνdep can be expressed as

TµνdepdΣdep.
ν =

pµparton[p0
partonj

ν ]

p0
parton

dΣdep.
ν = pµpartonj

νdΣdep.
ν (10)

It should be noted that the Tµνdep does not have the symmetric structure realized for the local equilibrium case.

III. ENERGY-MOMENTUM DEPOSITION AT A CONSTANT-τ HYPERSURFACE

In the MUSIC hydro module incorporated with Causal Liquefier of JETSCAPE, the energy-momentum deposition
into the fluid is carried out at the constant-τ hypersurface at τ = τdep = τstart + τdelay [Here τstart is the starting
proper time for the evolution by the diffusion equation and calculated by using tstart and ~xparton. It is denoted by
tau drop in the code.] :

dΣdep.
ᾱ = Λᾱ

µ(ηs) dΣdep.
µ = ( τdep dx dy dηs , 0, 0, 0) (11)

Here, ᾱ(, β̄, γ̄, . . .) = τ, x, y, ηs is the suffixes for the components in the τ -ηs coordinate system and Λµᾱ(ηs) is the matrix
for the transformation from the Cartesian coordinate system [xµ = (x0, x1, x2, x3) = (t, x, y, z)] to τ -ηs coordinate
system as

Λᾱ
µ(ηs) =


cosh ηs 0 0 sinh ηs

0 1 0 0

0 0 1 0

sinh ηs 0 0 cosh ηs

 . (12)

Since

TµνdepdΣdep.
ν = pµpartonj

νdΣdep.
ν = pµpartonj

ᾱdΣdep.
ᾱ = pµpartonj

τ [τdxdydηs] , (13)

The output from the Causal Liquefier is

pµpartonj
τ = pµpartonΛτ µ(ηs)j

µ = pµparton (ρ cosh ηs − jz sinh ηs) , (14)

where

Λᾱµ(ηs) =


cosh ηs 0 0 − sinh ηs

0 1 0 0

0 0 1 0

− sinh ηs 0 0 cosh ηs

 . (15)

The transformation by this matrix is done by the functions get tau and get peta in the code. Thus, in the Causal
Liquefier module, ρ and jx (jt and jz in the code) are caluculated from the relativistic diffusion equation and then
gives the source term

J ᾱ = Λᾱµ(ηs)J
µ = Λᾱµ(ηs)T

µν
dep(t, ~x)dΣdep.

ν

= pµpartonj
τ = pµparton (ρ cosh ηs − jz sinh ηs) (16)
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[jτ = (ρ cosh ηs − jz sinh ηs) is jtau in the code] to the MUSIC hydro module solving the hydrodynamic equation
with the source term in the τ -ηs coordinates:

∇ᾱT ᾱβ̄fluid = J β̄ , (17)

where

∇ᾱT ᾱβ̄fluid = ∂ᾱT
ᾱβ̄
fluid + Γᾱᾱγ̄T

γ̄β̄
fluid + Γβ̄ᾱγ̄T

ᾱγ̄
fluid (18)

is the covariant derivative of T ᾱβ̄fluid in the τ -ηs coordinates. The source term is denoted as

J ᾱ = (jτ , jx, jy, jηηs ) = (jmu[0], jmu[1], jmu[2], jmu[3]) (19)

in the code.
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