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I. PREPARATION: ONE-SIDED FOURIER TRANSFORMATION

One-sided Fourier transformation and its inverse transformation are

flw, k) = /0 Tt / dBrei(“=F%) £ 7).
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f(t,x):/ /We (wi—k )f(w,k).
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II. GENERAL SOLUTION IN THE FOURIER SPACE

We would like to solve the differential equation

p  dp 2
TW—FE = DV~*p, <t>0),
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with a given set of the initial condition for n and dp/0t at t = 0. Perform the one-sided Fourier transformation (with

imposing the initial conditions),

/ dte““t{ 9o, k:)+g—(t k;)] — _E2Dp(w, 7)., (4)
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where pg = /d3xe*“€'fp(t =0,%) and % = /d%efﬁ%f%(t =0,7).

III. INITIAL CONDITIONS, CURRENT, AND GREEN’S FUNCTION

A. Initial conditions

9
For the case with the initial conditions, n(t = 0, %) = 6®*) (%) and a—/t)(t =0,%) =0,

- 1 —wr
k) =
plw, k) —w2T — w4+ k2D’

since pg = /d?’xe*i’;'fé(?’)(‘f’) =1.

B. Current

The current j is defined to have the equation of continuity and satisfies the constitutive equation for the relativistic

diffusion equation,
9= -
— =DV
(9 J+J p-
After the Fourier transformation one can obtain,

S —ikD . —ikD
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C. Green’s function

In the w-k space, the Green’s function for the relativistic diffusion equation can be written as

. 1
Glw. k) = —w2T —iw+ k2D’

So, n and 5 can be written with G as
p(wvl_ﬁ’) = (1 _iWT) G(W7E)7 j(wﬁ) = _iDEG(wvl_C’)a

pt, @) = (1 + T;D G(t,Z), j(t, &) = —-DVG(t,T).
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IV. CALCULATION OF THE GREEN’S FUNCTION IN ¢-Z SPACE

Perform the inverse Fourier transformation,

d3k: (R (. I d3k o (Wt 7)

/ / (w, k) / / 3 —w?T —iw + k2D (14)
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The solutions of the characteristic equation w? + w — —kZ =0 are wy = > [—i + V4DEk21 — 1} and one can get
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Remind that the relativistic diffusion equation descrlbe the evolution for the time ¢ > 0, carry out the integration in
the lower half plane of w,
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A. One dimensional case
For the preparation of the 3D case, let’s consider the 1-D case,
\/4DKk2r—1 \/4Dk27 1
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where A and B are defined as

'Lkw 'Lk:v
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and actually, they can be written as

0 (z > ct) 0 (z + ct > 0)
A=< —2inJy(ifV 22 —x?) (ct > |x|) { Simdo(BVaE = 2HZ) (x+ct <0)° (20)
9 2 —
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where J, is the Bessel function. Then, using Io(x) = Jy(ix), one can obtain [1, 2]

G'P(t,x) = <, (1 N :172> 0(ct — 2)0(ct + ). (21)
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Denote u = v/ 22 —r2, J, = J,(ifu) and I, = I, (Bu) (I, (x ) is the modified Bessel functions of the first kind). The
op'P

solution for the initial condition p'” (¢t = 0,z) = §(z) and (t =0,z) = 0 can be written as

ot
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Then,

pP(t,x) = %e—% {5(ct —x) + 6(ct +z) + 0(ct — |z|) [1 o+ 211}} (25)

This is the one which can be found in wikipedia <https://en.wikipedia.org/wiki/Green’27s_function>.

B. Three dimensional case

Denote r = v/x2 + y2 + 22, there is a relation between 1-D case and 3-D case when the Green function is isotropic
in space,

1 oG (¢, r)
3D _
GHtr) = o O (26)
Using — Ou _T, one can calculate,
or U
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The solution for the initial condition pP(t = 0,Z) = 6 (&) and 5 (t=0,%) =01is
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and the current is
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Appendix A: Tips for the modified Bessel function of first kind I,

Recurrence Relation

Derivative:

Others:

I_,(z) =1,(x),
Io(0) =1, I1(0) = I(0) = 0.
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Using au_ C—, one can calculate
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Appendix B: Calculation of p
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[Assumed the integration with r*dr for the transfromation for the derivative of the delta function]

Here, the integration of n with r2dr gives the flux in t-direction, which is the quantity we are supposed to estimate
in the simulation.



Appendix C: Calculation of ?’D
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[Assumed the integration with dt for the transfromation for the derivative of the delta function]

Here, the integration of 5 with time dt gives the flux in the radial direction, which is the quantity we are supposed to
estimate in the simulation.
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